Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Research of the Primary Breakup of a Planar Liquid Sheet Produced by an Air-Blast Atomizer

2014-04-01
2014-01-1430
The primary breakup of a planar liquid sheet produced by an air-blast atomizer was studied through numerical simulations, in order to reveal physical mechanisms involved during this process. The reliability of simulations was verified by comparing the macroscopic parameters, e.g. breakup time and spatial growth rate, with experimental data. Shear instability and RT (Rayleigh-Taylor) instability were found to play important roles during the primary breakup. By analyzing the acceleration of a fluid parcel within liquid sheet using Discrete Particle Method, and measuring the wave length of transverse unstable wave, RT instability was found to be partially responsible for transverse instability. The predictions of LISA (Linearized Instability Sheet Atomization) model on breakup time were compared to experiments, and obvious differences were found to exist.
Technical Paper

Research on Control Strategy Optimization for Shifting Process of Pure Electric Vehicle Based on Multi-Objective Genetic Algorithm

2020-04-14
2020-01-0971
With more and more countries proposing timetables for stopping selling of fuel vehicles, China has also issued a “dual-slope” policy. As electric vehicles are the most promising new energy vehicle, which is worth researching. The integration and control of the motor and gearbox have gradually become a hot research topic due to low cost with better performance. This paper takes an electric vehicle equipped with permanent magnet synchronous motor and two-gear automatic transmission without synchronizer and clutch as the research object.
Technical Paper

Research on Control Strategy of Shifting Progress

2008-06-23
2008-01-1684
Based on BF6M1015CP electronic diesel engine (it is a supercharged, water-cooled engine. It has 6 cylinders and it is for heavy-duty vehicle) and HD4070PR electronic automatic transmission (it covers heavy-duty applications requiring high input horsepower and torque. It contains torque converter module, control module, planetary module and output module. It has 7 forward gears and a power-take -off (PTO) and a retarder), the paper analyzes the shift system of an electronic automatic transmission and sets up a mathematic module of the shifting process. With the model the shifting process is analyzed and the model can be used directly in shifting process control, and the rules of shifting process can be derived. To improve the shift quality, in the paper the different control methods in different phases are used and reviewed that Include the open-loop control, fixed ramp rate, and closed-loop control.
Technical Paper

Research on Manual Transmission Rattle Noise Experiment Technique

2021-04-06
2021-01-0702
Gear rattle noise is one of the important characteristics of manual and dual-clutch transmission,it is generated by the impact of unloaded meshing gear pairs in the transmission due to engine torsional vibration. Based on a front-drive manual transmission and a five dynos drivetrain NVH test bench with high-speed sine wave generator function, this paper designs an experimental program suitable for transmission rattle noise. By driving dynamometer to simulate the torque fluctuation of real engine, the main research is to study the characteristics of the transmission rattle noise under different excitation amplitudes and different excitation frequencies, and the sensitivity of rattle noise under different gears, different oil temperatures, different excitation amplitudes and excitation frequencies is analyzed. Finally, the transmission maps of rattle noise in different gears can be obtained.
Technical Paper

Research on Roll Vibration Characteristics of a Truck's Front Suspension

2015-04-14
2015-01-0635
For the roll vibration problem of a Truck, a 4-DOF roll vibration model of its front suspension system was built. According to dynamics theory, the complex modal vibration modes of the model were all obtained. At the same time, the frequency response functions of frame roll angle acceleration, the relative dynamic load of wheel and the suspension dynamic deflection were respectively presented. Then their characteristics were respectively researched. In the process of characteristic analysis, a new system parameter was proposed, which is the space ratio of the space between suspensions of left and right sides and the wheel track of the front axle (space ratio in short). At last, the influence of system parameters on the vibration transmission property was also reserached, which included the natural frequency of the frame, the damping ratio, the stiffness ratio, the mass ratio, the rotational inertia ratio and the space ratio.
Technical Paper

Research on Temperature Stability of an Independent Energy Supply Device with Organic Rankine Cycles Based on Hydraulic Retarder

2017-09-22
2017-01-7003
Hydraulic retarder, as an auxiliary braking device, is widely used in commercial vehicles. Nowadays, the hydraulic retarder’s internal oil is mainly cooled by the coolant circuit directly. It not only aggravates the load of engine cooling system, but also makes the abundant heat energy not be recycled properly. In this study, an independent energy supply device with organic Rankine cycles is applied to solve the problems above. In the structure of this energy supply device, the evaporator’s inlet and outlet is connected in parallel with the oil outlet and inlet of the retarder respectively. A part of oil enters the evaporator to transfer heat with the organic fluid, and the rest of oil enters the oil-water heat exchanger to be cooled by the coolant circuit. According to the different braking conditions of the retarder, the oil temperature in the inlet of the hydraulic retarder can be kept within the proper range through adjusting the oil flow rate into the evaporator properly.
Technical Paper

Research on a Neural Network Model Based Automatic Shift Schedule with Dynamic 3-Parameters

2005-04-11
2005-01-1597
To reach the goal of optimal performance match between engine and transmission, the dynamic characteristics of engine should be taken into consideration. In the paper, the dynamic torque and fuel consumption models of engine, described by a multi-layers feed forward neural network, were established. Based on that, the methods used to calculate the optimal dynamic and economical shift schedules with dynamic 3-parameters were put forward. The shift schedule with dynamic 3-parameters based on neural network model is proven to be superior to the shift schedule with only 2-parameters in both dynamic performance and fuel economy by the test.
Technical Paper

Research on the Anti-Shuffle Control for Hybrid Electric Vehicles in the Parallel Mode

2024-04-09
2024-01-2714
In order to solve the problems of the shuffle caused by internal and external excitation and the difficulty in obtaining the real-time accurate engine torque during the parallel mode operation of hybrid electric vehicles, a dynamic coordination control strategy for suppressing the jitter of hybrid electric vehicles based on the closed-loop control of engine speed was proposed. The engine torque filtering control method based on the slope limit was adopted to limit the rate of change of the engine torque and reduce the impact caused by the sudden change of the engine torque; the engine speed closed-loop control method was used to take the motor speed which is easy to be measured accurately in real time as the feedback control variable, which solved the problem of the real-time accurate estimation of the engine torque online. In parallel mode, the motor torque accounts for a small proportion because the torque distribution method gives priority to the engine.
Technical Paper

Research on the Anti-Shuffle Control for Hybrid Electric Vehicles in the Pure Electric Mode

2024-04-09
2024-01-2713
In hybrid vehicles, the drive motor is directly connected to the drive train and the inherent drive train damping is low. When subjected to external disturbance, the low damping characteristics of the transmission system may cause torsional vibration, which will continue to oscillate the transmission system and affect the driving performance of the vehicle. In this paper, we propose a harmonic injection wheel control method based on motor speed to suppress oscillations and improve the driving performance of hybrid electric vehicles. The harmonic injection control method based on motor speed is based on Fourier transform to decompose sinusoidal harmonics based on specific order of motor speed. RLS algorithm is used to estimate the amplitude and phase, and PI control is used to calculate the compensation torque for the actual amplitude and target amplitude. Simulation and test results show that the proposed control strategy is effective in suppressing oscillations.
Technical Paper

Research on the Classification and Identification for Personalized Driving Styles

2018-04-03
2018-01-1096
Most of the Advanced Driver Assistance System (ADAS) applications are aiming at improving both driving safety and comfort. Understanding human drivers' driving styles that make the systems more human-like or personalized for ADAS is the key to improve the system performance, in particular, the acceptance and adaption of ADAS to human drivers. The research presented in this paper focuses on the classification and identification for personalized driving styles. To motivate and reflect the information of different driving styles at the most extent, two sets, which consist of six kinds of stimuli with stochastic disturbance for the leading vehicles are created on a real-time Driver-In-the-Loop Intelligent Simulation Platform (DILISP) with PanoSim-RT®, dSPACE® and DEWETRON® and field test with both RT3000 family and RT-Range respectively.
Technical Paper

Research on the Control Strategy of Electric Vehicle Active Suspension Based on Fuzzy Theory

2024-04-09
2024-01-2290
The performance of suspension system has a direct impact on the riding comfort and smoothness. For the traditional suspension can not effectively alleviate the impact of road surface and the poor anti-vibration performance, The dynamics model of vehicle suspension system is established, and the control model of vehicle four-degree-of-freedom active suspension is designed with fuzzy control strategy. On this basis, a comprehensive simulation model of the control model of vehicle active suspension coupled with road excitation is established. and the ride comfort of vehicles under different types of suspension are tested through Simulink. The simulation results show that compared with the passive suspension, the reduction of vehicle acceleration and dynamic deformation of the active suspension controlled by fuzzy PID can reach 33.76% and 22.45%. and the reduction of pitch Angle speed and dynamic load of the active suspension controlled by fuzzy PID can reach 16.18% and 10.72%.
Technical Paper

Research on the Cylinder-by-cylinder Variations Detection and Control Algorithm of Diesel Engine

2015-04-14
2015-01-1644
The cylinder-by-cylinder variations have many bad impacts on the engine performance, such as increasing the engine speed fluctuation, enlarging the torsional vibration and noise. To deal with this problem, the impact mechanism of cylinder-by-cylinder variations on low order torsional vibration has been studied in this paper, and subsequently a new individual cylinder control strategy was designed by processing the instantaneous crankshaft rotation speed signal, detecting the cylinder-by-cylinder variation and using feed-back control. The acceleration characteristics of each cylinder in each engine cycle were compared with each other to extract the variation index. The feed-back control algorithm was based on the regulation of the fuel injection according to the detected variation level.
Technical Paper

Research on the Oscillation Reduction Control During Gearshift in Hybrid Electric Vehicles

2024-04-09
2024-01-2718
In order to realize the shift control of dual-motor hybrid electric vehicle (HEV), a non-power interruption shift control method based on three-power source coordination control was proposed by analyzing the shift process of dual-motor hybrid configuration. The shift control process was divided into three stages: oil-filling self-learning stage, torque exchange stage and inertia control stage. In the torque exchange stage, the characteristics of the speed stage and torque stage were analyzed, which was different from the traditional method's dependence on pressure sensor, longitudinal acceleration sensor and engine torque accuracy. A shift clutch gain self-learning strategy based on shift time and input shaft speed soaring problem was proposed.
Technical Paper

Research on the Oscillation Reduction Control During Mode Transition in Hybrid Electric Vehicles

2024-04-09
2024-01-2720
In order to realize the series-parallel switching control of hybrid electric vehicle (HEV) with dual-motor hybrid configuration, a method of unpowered interrupt switching based on the coordinated control of three power sources was proposed by analyzing the series-parallel driving mode of the dual-motor hybrid configuration. The series to parallel switching process is divided into three stages: speed regulation stage, clutch combination and power source switching. The distribution control of speed regulating torque is carried out in the speed regulating stage. The speed adjustment torque is preferentially allocated to the power source of the input shaft (engine and P1) to carry out the lifting torque. Due to the high speed adjustment accuracy and fast response of the P1 motor, the input shaft is preferentially allocated to P1 for speed adjustment, that is, the torque intervention of P1.
Technical Paper

Road Classification Based on System Response with Consideration of Tire Enveloping

2018-04-03
2018-01-0550
This paper presents a road classifier based on the system response with consideration of the tire enveloping. The aim is to provide an easily applicable yet accurate road classification approach for automotive engineers. For this purpose, tire enveloping effect is firstly modeled based on the flexible roller contact (FRC) theory, then transfer functions between road input and commonly used suspension responses i.e. the sprung mass acceleration, unsprung mass acceleration, and rattle space, are calculated for a quarter vehicle model. The influence of parameter variations, vehicle velocity, and measurement noise on transfer functions are comprehensively analyzed to derive the most suitable system response thereafter. In addition, this paper proposes a vehicle speed correction mechanism to further improve the classification accuracy under complex driving conditions.
Technical Paper

Scheme and Structure Design of Binary Double Internal Meshing Planetary Gear Transmission

2021-04-14
2020-01-5227
Aiming at the low transmission efficiency and power density of the hydraulic automatic transmission (AT), and the increasingly complex structure of its planetary gear with the increase of transmission gears, this paper proposes a new type of binary logic transmission (BLT), which adopts the double internal meshing planetary row (DIMPR), based on a heavy-duty commercial vehicle. By introducing the concept of BLT and analyzing the transmission performance of the DIMPR, the process of scheme design of binary double internal meshing planetary gear transmission (BDIMPGT) is established. According to the structural characteristics of the DIMPG, the support structure of the planetary gear is designed based on CAD and CATIA. In the structural design of binary clutches, V-groove clutch parts are coupled to the transmission case, planetary carrier, and sun shaft, respectively, in each DIMPG.
Technical Paper

Simulation Research on Engine Speed Fluctuation Suppression Based on Engine Torque Observer by Using a Flywheel ISG

2019-04-02
2019-01-0787
This paper conducts simulation research on engine torque ripple suppression based on the engine torque observer by using a flywheel-ISG (integrated starter generator). Usually, engine torque can be suppressed by using a passive method such as by installing a flywheel or torsional damper. However, failure problems arise in hybrid system because of different mechanical characters of the engine and its co-axial ISG motor. On the prototype test bench, the flywheel of the engine has been removed and replaced by an ISG rotor, namely FISG (flywheel ISG). Besides, the crank and FISG rotor are directly connected, which means no dampers or clutches are installed. If the engine torque ripples can be suppressed by the same level as the flywheel and damper by FISG active torque compensation, the new system can be more compact and economical. Simulation efforts are made to verify its feasibility. Firstly, based on the experimental test bench, which is currently under construction.
Technical Paper

Slope Starting Control of Off-Road Vehicle with 32-Speed Binary Logic Automatic Transmission

2022-01-03
2022-01-5001
Taking an off-road vehicle equipped with 32-speed binary logic automatic transmission (AT) as the research object, the slope starting control research is carried out. The slope starting process is divided into the overcoming resistance stage, the sliding friction stage, and the synchronization stage. The control strategies for each stage are designed respectively. Focusing on the control of the sliding friction stage, the equivalent two-speed model of the starting clutch is established, which realizes the calculation of the speed difference and the slip rate between the driving and driven ends of the starting clutch. Furthermore, the slope starting control strategy based on the proportional-integral-derivative (PID) control of the clutch slip rate is designed. Through the simulation tests of the vehicle starting at different slopes, the correctness of the slope starting control strategy has been verified by MATLAB/Simulink.
Technical Paper

Studies on Anti-Slip Regulation Technologies for AMT Vehicles

2007-04-16
2007-01-1314
In order to improve the tractive ability, steering capability and directional stability, etc. of automated mechanical transmission (AMT) vehicles running on the wet and slippery road, the anti-slip regulation (ASR) technologies for AMT vehicles are developed. The significance of ASR for AMT vehicles is introduced; a road friction recognition method based on the deceleration of driving wheels is investigated; a fuzzy anti-slip control system based on adjustment of engine torque is developed and the corresponding experimental verification is conducted. The experimental results denote that the proposed method is effective to eliminate the excessive slip when the AMT vehicle travels on the low friction road.
Technical Paper

Studies on Steering Feeling Feedback System Based on Nonlinear Vehicle Model

2017-03-28
2017-01-1494
The steer-by-wire system has been widely studied due to many advantages such as good controllability. In the system, the steering column is cancelled and the driver can't feel the feedback torque (also called steering feeling) coming from the ground. Therefore a steering feeling feedback system is needed. In this paper, we propose a simple method to calculate desired feedback torque based on a nonlinear 2DOF vehicle model. The vehicle model contains the nonlinearity of tire. So that the proposed method is also appropriate for big acceleration conditions. Besides that, the properties of steering system such as friction and stiffness are also taken into consideration. As for conventional steering system, driver can only feel part of the feedback torque due to the power assist system. In order to provide steering feeling similar to conventional steering system, a weighting function is proposed to compensate the influence of power assist system.
X